

The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: a novel catechol amine uptake process

L.L. Iversen

Commentary by

L.L. Iversen

This paper resulted from one of the most satisfying experiences which any scientist can have - the accidental discovery of an unexpected phenomenon. In December 1963, towards the end of PhD studies in the Department of Pharmacology in Cambridge under the supervision of Arnold Burgen, I was completing studies on the kinetics of catecholamine uptake in rat isolated heart preparations. Saturation curves for noradrenaline and adrenaline uptake had already been partly completed, indicating half saturation values well below 1 $\mu\text{g}/\text{ml}$ for each. For the sake of completeness some experiments were performed at much higher adrenaline concentrations, up to 5 $\mu\text{g}/\text{ml}$. The results showed a much larger than expected accumulation of adrenaline, indicating a rate of uptake that was more than 10 times higher than that predicted from the previous saturation data. As this result was repeated and even higher catecholamine concentrations were explored it rapidly became clear that a wholly different mechanism was operating. The paper described this second transport mechanism, which was termed "Uptake₂" for convenience, as a low affinity high capacity transport quite unlike the high affinity low capacity uptake sites in sympathetic nerve endings (Uptake₁). Uptake₂ was freely reversible, showed a preference for adrenaline over noradrenaline, exhibited little stereochemical selectivity and was relatively insensitive to the Uptake₁ inhibitors cocaine and desipramine. The O-methylated catecholamine metabolites normetanephrine and metanephrine were the most potent inhibitors. Although it has subsequently become clear that Uptake₂ represents an extraneuronal mechanism, this was not established at the time - and indeed there appeared to be some reduction in its capacity

in the small number of sympathetically denervated (immunosympathectomised) hearts available.

Subsequent histochemical studies in a number of laboratories clearly revealed the extraneuronal location of this uptake mechanism. When hearts were perfused with high concentrations of catecholamines a prominent accumulation of amine was observed in the cardiac muscle and other non-neuronal tissues (Ehinger & Sporrong, 1968; Farnebo & Malmfors, 1969; Jacobowitz & Brus, 1971), and this observation was also made in a variety of other peripheral sympathetically innervated tissues. In this context the detailed quantitative histochemical studies performed by John Gillespie and his colleagues on spleen, vas deferens and artery preparations deserve special mention (Gillespie & Muir, 1970; Gillespie, 1973).

Using the rat isolated heart preparation Brian Callingham (Callingham & Burgen, 1966) went on to show that isoprenaline was the preferred catecholamine substrate for Uptake₂, and Ullrich Trendelenburg and colleagues in their detailed studies of this mechanism demonstrated that a variety of other monoamines can act as substrates, including 5-hydroxytryptamine and histamine (Grohmann & Trendelenburg, 1984). In my laboratory in Cambridge, Patrick Salt found that Uptake₂ was inhibited by corticosterone and various related steroids, and these have proved to be useful research tools (Iversen & Salt, 1970). Stafford Lightman showed that Uptake₂ could be demonstrated at much lower perfusion concentrations in the rat isolated heart if the degradative enzymes catechol-O-methyl transferase and monoamine oxidase were inhibited (Lightman & Iversen, 1969). This suggested that Uptake₂ was not a threshold phenomenon as at first had

appeared, but operated throughout the range of catecholamine concentrations. At low concentrations no amine accumulation could be observed as the transport amine was rapidly metabolised. These concepts have been refined still further through the meticulous kinetic studies of catecholamine disposition performed by Trendelenburg and colleagues (for review see Bönisch, 1980; Trendelenburg, 1988).

Although the precise function of Uptake₂ is hard to define, it represents a widely distributed mechanism in adrenergically sensitive tissues which participates in the disposal of biologically active monoamines - including those released into the circulation from the adrenal medulla and those released from sympathetic nerves. There has been a long standing debate about the relative importance of neuronal uptake versus metabolism via monoamine oxidase and catechol-O-methyl transferase in determining apparent agonist potencies in adrenergically responsive tissues (Kalsner & Nickerson, 1969; Langer & Trendelenburg, 1969; Trendelenburg, 1973; Iversen, 1971, 1975). The answer can now be seen to depend on which tissue is being studied and the relative affinities of the agonist for neuronal versus extraneuronal uptake. In such tissues as vas deferens or cat nictitating membrane which have a dense sympathetic innervation (i.e. a high capacity of Uptake₁ sites) the neuronal uptake mechanism is far more important than in such tissues as aorta or other arteries, in which the neuronal uptake sites are more sparsely distributed and released catecholamine may travel significant distances from sites of neural release to

smooth muscle targets (Trendelenburg *et al.*, 1969; Burnstock *et al.*, 1972). In densely innervated tissues the dose-response curves for noradrenaline and adrenaline will usually show a leftward shift in the presence of cocaine or desipramine, whereas in sparsely innervated tissues inhibitors of Uptake₂ (e.g. steroids) or inhibitors of catechol-O-methyl transferase will have this effect whereas cocaine and desipramine are ineffective (Kalnser, 1969; Kaumann, 1972).

Recent years have seen further progress in research on the extraneuronal transport mechanism. Uptake₂ may well correspond to the organic cation transporter (OCT1) recently cloned from kidney (Gründemann *et al.*, 1994). Schömig and colleagues in Würzburg have identified a human cell line (Caki-1) as a convenient model system for studying Uptake₂ (Schömig & Schönfield, 1990), and they have shown that the neurotoxin 1-methyl-4-phenylpyridinium (MPP⁺) is a substrate (Russ *et al.*, 1992). This group has also identified a series of cyanine dye derivatives that act as inhibitors of Uptake₂ at nanomolar concentrations (Russ *et al.*, 1993).

Very recently it has been reported that Uptake₂ is expressed in human glioma cell lines (Streich *et al.*, 1996) and that the sensitivity of some glioma cells to nitrosourea derivatives may depend on the selective accumulation of these drugs into the cells via the Uptake₂ mechanism (Noë *et al.*, 1996). The possibility of designing new chemotherapeutic agents that are selectively targeted to tumours by means of Uptake₂ appears to be yet another unexpected discovery in this line of research.

References

BÖNISCH, H. (1980) Extraneuronal transport of catecholamines. *Pharmacology*, **21**, 93-108

BURNSTOCK, G., MCCULLOCH, M.W., STORY, D.F. AND WRIGHT M.E. (1972) Factors influencing the extraneuronal inactivation of noradrenaline in cardiac and smooth muscle. *Brit. J. Pharmac.* **46**: 243-253

CALLINGHAM, B.A. AND BURGEN, A.S.V. (1966) The uptake of isoprenaline and noradrenaline by the perfused rat heart. *Mol. Pharmacol.* **2**: 37-42

EHINGER, B. & SPORRONG, B. (1968) Neuronal and extraneuronal localisation of noradrenaline in the rat heart after perfusion at high concentration. *Experientia*, **24**: 265-266

FARNEBO, L.O. AND MALMFORS, T. (1969) Histochemical studies on the uptake of noradrenaline and α -methylnoradrenaline in the perfused rat heart. *Europ. J. Pharmacol.*, **5**: 313-320

GILLESPIE, J.S. (1973) Uptake of noradrenaline by smooth muscle. *Brit. Med. Bull.*, **29**: 136-141

GILLESPIE, J.S. & MUIR, T.C. (1970) Species and tissue variation in extraneuronal and neuronal accumulation of noradrenaline. *J. Physiol.*, **206**: 591-604

GROHMANN, M. AND TRENDELENBURG, U. (1984) The substrate specificity of uptake₂ in the rat heart. *N.S. Archiv. Pharmacol.*, **328**: 164-173

GRÜNDEMANN, D., GORBOULEV, V., GAMBARYAN, S., VEYHL, M. AND KOESPELL, H. (1994) Drug excretion mediated by a new prototype of polyspecific transporter. *Nature*, **372**: 549-552

IVERSEN, L.L. (1971) Role of transmitter uptake mechanisms in synaptic neurotransmission. Third Gaddum Memorial Lecture 1970. *Brit. J. Pharmacol.*, **41**: 571-591

IVERSEN, L.L. (1975) Uptake processes for biogenic amines. In "Handbook of Psychopharmacology" eds L. Iversen & S. Snyder, Vol.3, pp381-442, Plenum Press, New York.

IVERSEN, L.L. AND SALT, P.J. (1970) Inhibition of catecholamine uptake₂ by steroids in the isolated rat heart. *Brit. J. Pharmacol.*, **40**: 528-530.

JACOBWITZ, D. AND BRUS, R. (1971) A study of the extraneuronal uptake of norepinephrine in the perfused heart of the guinea-pig. *Europ. J. Pharmacol.*, **15**: 274-284

KALSNER, S. (1969) Steroid potentiation of responses to sympathomimetic amines in aortic strips. *Brit. J. Pharmacol.*, **36**: 582-593

KALSNER, S. AND NICKERSON, M. (1969) Disposition of norepinephrine and epinephrine in vascular tissue, determined by the technique of oil immersion. *J. Pharmacol. exp. Ther.*, **165**: 152-165

KAUMANN, A.J. (1972) Potentiation of the effects of isoprenaline and noradrenaline by hydrocortisone in cat heart muscle. *N.S. Archiv. Pharmacol* **273**: 134-153

LANGER, S.Z. AND TRENDELENBURG, U. (1969) The effect of a saturable uptake mechanism on the slopes of dose-response curves for sympathomimetic amines and on the shifts of dose-response curves produced by a competitive antagonist. *J. Pharmacol. exp. Ther.*, **167**: 117-142.

LIGHTMAN, S., AND IVERSEN, L.L. (1969) Role of Uptake₂ in the extraneuronal uptake and metabolism of catecholamines in the isolated rat heart. *Brit. J. Pharmacol.*, **37**: 638-649

NOË, A.J., MARCANTONIO, D., BARTON, J., MALAPETSA, A. AND PANACI, L.C. (1996) Characterization of the catecholamine extraneuronal Uptake₂ carrier in human glioma cell lines SK-MG-1 and SKI-1 in relation to "2-chlorethyl)-3-sarcosinamide-1-nitrosourea (SarCNU) selective cytotoxicity. *Biochem. Pharmacol.*, **51**: 1639-1648

RUSS, H., GLIESE, M., SONNA, J. AND SCHÖMIG, E. (1992) The extraneuronal transport mechanism for noradrenaline (uptake₂) avidly transports 1-methyl-4-phenylpyridinium (MPP⁺) *N.S. Archiv. Pharmacol.*, **346**: 158-165

RUSS, H., SONNA, J., KEPPLER, K., BAUNACH, S. AND SCHÖMIG, E. (1993) Cyanine-related compounds: a novel class of potent inhibitors of extraneuronal noradrenaline transport. *N.S. Archiv. Pharmacol.*, **348**: 458-465

SCHÖMIG, E. AND SCHÖNFELD, C.L. (1990) Extraneuronal noradrenaline transport (uptake₂) in a human cell line (Caki-1 cells). *N.S. Archiv. Pharmacol.*, **341**: 404-410

STREICH, S., BRÜSS AND BÖNISCH, H. (1996) Expression of the extraneuronal monoamine transporter (uptake₂) in human glioma cells. *N.S. Archiv. Pharmacol.*, **353**: 328-333

TRENDELENBURG, U. (1973) Factors influencing the concentration of catecholamines at the receptors. In "Handbook of Experimental Pharmacology", Vol XXXIII pp 721-761, Springer, Berlin

TRENDELENBURG, U. (1988) The extraneuronal uptake and metabolism of catecholamines. In "Handbook of Experimental Pharmacology" (eds Trendelenburg, U. and Weiner, N), Vol 90/1, pp 279-319

TRENDELENBURG, U., DRASKOCZY, P.R. AND PLUCHINO, S. (1969) The density of innervation of the cat's nictitating membrane as a factor influencing the sensitivity of the isolated preparation to L-norepinephrine. *J. Pharmac. exp. Ther.*, **166**: 14-25